Kapitel 28: Behälter-Baugruppe mit eingefügten MPC-Schweißnähten vernetzen und berechnen

Eine dünne Behälterstruktur mit 4 Standbeinen kann weder mit NETGEN noch mit GMSH vernetzt werden.

Die Fehlermeldung "Tetrahedron count = 0" wird in Netzgenerator angezeigt und bedeutet daß eine Tetraeder-Vernetzung nicht möglich ist.

In solchen Fällen muß das Modell nochmals genau nach Flächen-Überlappungen oder Innenverschneidungen untersucht werden.

Man kann auch Repair-Tools wie Cadfix oder Transmagic verwenden um das CAD-Modell zu reparieren.

Aber in den meisten Fällen hat man leider keine Chance das Modell zu vernetzen.

Max, Grobe;	1000.00	÷
Zweite Ordnung		
Feinheit:	Mittel	•
Wachstumsrate:	0.30	-
Anz. Segmente pro Kante:	1	-
Anz. Segmente pro Radius:	2	-
🗹 Optimieren		
	Behälter kann nicht mit Tetraedern	

Bei genauerer Betrachtung sieht man aber sofort, daß die 4 Standbeine nicht mit dem Behälter verbunden sind und frei in der Luft hängen.

Eine FEM-Analyse um den Spannungsverlauf vom Behälter und Standbeine zu berechnen ist damit nicht möglich.

Mit dem FEM-System MEANS V12 (siehe Webseite <u>www.femcad.de</u>) besteht jedoch die Möglichkeit mit starren MPC-Balkenelementen frei hängende Teile mit der Struktur automatisch zu verbinden.

Führen Sie folgende Arbeitsschritte mit MEANS V12 aus:

Schritt 1: FEM-Netz des Behälters mit GMSH erzeugen

68

Schritt 2: FEM-Netz der 4 Standbeine mit GMSH erzeugen

Schritt 3: FEM-Netze von Behälter und Standbeine zusammenladen

Mit Register "Datei" und Menü "FEM-Zuladung" werden Behälter und Standbeine zu einem FEM-Modell mit 2 Elementgruppen zusammengefügt.

Schritt 4: Knotenbereich vom Trichter und Standbeinen erzeugen

Erzeugen Sie zuerst das Flächenmodell und wechseln zum Knoten-Modus und erzeugen mit "Flächenknoten" einen Knotenbereich von der äußeren Trichter-Fläche und den 4 Standbein-Flächen die zum Trichter hinliegen und die nur zu erreichen sind indem Elementgruppe 2 ausgeblendet wird.

Schritt 5:. MPC-Elemente erzeugen

Zum Schluß wählen Sie Register "Datei" und Menü "MPC-Kontakte" und erzeugen aus dem Knotenbereich ein neues FEM-Modell mit 97 170 TET4-Elementen, 2208 MPCs, 32 541 Knotenpunkten und 3 Elementgruppen.

71

Knotenbereich von Trichter und Standbeinen

Dialogbox zur Generierung der MPC-Elementen

FEM-Modell hat 97170 Elementen und 2208 MPCs		Drahtgitter	
Kontaktberechnung starten Schritt 1		O Kontakt automatisch berechnen	
Kontaktberechnung anhalten und anzeigen		O Eingabe von 2 Kontaktflächen	
Anzahl Kontakte = 528 wurden in der Datei mpc.con gesicher	t!	 Eingabe eines Knotenbereiches 	
Knotenbereich A im Knoten-Modus anzeigen	Schritt 2		
Bereich A mit gelöschten oder hinzugefügten Knoten übernehmen		may Kontakt Minkal 4.2	
Knotenbereich A: 536		Kontakt-Abstand in mm: O <= 0.1 <= 0.5	
Knotenbereich B im Knoten-Modus anzeigen	Schritt 3	zulässige MPC-Länge: 99.41434	
Bereich B mit gelöschten oder hinzugefügten Knoten übernehmen			

2208 MPC-Elementen im Drahtgitter dargestellt die man ein- und ausblenden kann

Ergebnisauswertung

Der Stahl-Behälter wird mit einer Drucklast von 7 bar bzw. 0.7 N/mm² belastet und ist an den Standbeinen fest eingespannt. Als Ergebnis erhält man folgende Verformungs- und Spannungsverteilung.

Max. Verformung in X-, Y- und Z-Richtung = 8.4 mm

Max. v.Mises-Vergleichsspannung = 438 N/mm²